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We show how the dynamic renormalization of nonequilibrium systems can be carried out within the general
framework of nonequilibrium thermodynamics. Whereas the renormalization of Hamiltonians is well known
from equilibrium thermodynamics, the renormalization of dissipative brackets, or friction matrices, is the main
new feature for nonequilibrium systems. Renormalization is a reduction rather than a coarse-graining tech-
nique; that is, no new dissipative processes arise in the dynamic renormalization procedure. The general ideas
are illustrated for dilute polymer solutions where, in renormalizing bead-spring chain models, dissipative
hydrodynamic interactions between different smaller beads contribute to the friction coefficient of a single
larger bead.
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I. INTRODUCTION

The renormalization group is a well-established, powerful
tool for understanding critical phenomena in the statistical
mechanics of equilibrium systems �1–4�. The basic idea is to
compensate for a decimation in the number of degrees of
freedom by a renormalization of the parameters in the
Hamiltonian. Such transformations, which can be iterated,
contain important information about the long-range proper-
ties of self-similar systems. The Hamiltonian and the trans-
formation of the parameters in it clearly play a central role in
the renormalization of equilibrium systems.

If we turn our interest to time-dependent nonequilibrium
systems, what are the key objects on which a renormalization
should be performed? This is the question we address with
the methods of modern nonequilibrium thermodynamics,
which expresses time evolution in terms of fundamental
building blocks.

We first provide the required background from nonequi-
librium thermodynamics by summarizing the general equa-
tion for nonequilibrium reversible-irreversible coupling
�GENERIC� framework �Sec. II�. In particular, we describe
the rules for model reduction and coarse graining. The dy-
namic renormalization group has been applied very success-
fully to the calculation of rheological properties of dilute
polymer solutions �5–10�. We hence choose this example for
illustrating our ideas about dynamic renormalization and
sketch the required background from polymer kinetic theory
�Sec. III�. With the background from nonequilibrium thermo-
dynamics and polymer kinetic theory, we are in a position to
explain dynamic renormalization from a thermodynamic per-
spective and to prescind some general lessons �Sec. IV�.
Most importantly, it turns out that dynamic renormalization
is performed on dissipative brackets, or friction matrices, and
nevertheless does not require consideration of any time-
dependent properties or processes.

II. NONEQUILIBRIUM THERMODYNAMICS

Time-evolution equations for nonequilibrium systems
have a well-defined structure in which reversible and irre-

versible contributions are specified separately. In particular,
the reversible contribution is generally assumed to be of
Hamiltonian form and hence requires an underlying geomet-
ric structure �a Poisson bracket� which reflects the idea that
the reversible time evolution should be “under mechanistic
control.” The remaining irreversible contribution is driven by
the nonequilibrium entropy by means of a dissipative
bracket.

A. GENERIC framework

Our discussion is based on the GENERIC formulation of
the time evolution for nonequilibrium systems �11–13�. If A
is an arbitrary observable—that is, a sufficiently regular real-
valued function or functional of a set of independent vari-
ables x required for a complete description of a given non-
equilibrium system—the time evolution of A is given by

dA

dt
= �A,E� + �A,S� . �1�

The observables E and S generating time evolution are the
total energy and entropy, and �·,·� and �·,·� are Poisson and
dissipative bracket, respectively. The bracket of two observ-
ables A and B is another observable with a linear dependence
on A and B �a more complete characterization of Poisson and
dissipative brackets is given below�. The two contributions
to the time evolution of A generated by the total energy E
and the entropy S in Eq. �1� are the reversible and irrevers-
ible contributions, respectively. Equation �1� is supplemented
by the complementary degeneracy requirements

�S,A� = 0 �2�

and

�E,A� = 0 �3�

for all observables A. The requirement that the entropy be a
degenerate functional of the Poisson bracket expresses the
reversible nature of the first contribution to the dynamics: the
functional form of the entropy is such that it cannot be af-
fected by the Poisson-bracket contribution to the dynamics,
no matter which observable A is used as a generator E=A of*hco@mat.ethz.ch
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reversible dynamics. The requirement that the energy be a
degenerate functional of the dissipative bracket expresses the
conservation of the total energy in a closed system by the
dissipative contribution to the dynamics.

For completeness, we give the defining properties of Pois-
son and dissipative bracket. The Poisson bracket possesses
the antisymmetry property

�A,B� = − �B,A� �4�

and satisfies the product or Leibniz rule

�AB,C� = A�B,C� + B�A,C� �5�

and the Jacobi identity

ˆA,�B,C�‰ + ˆB,�C,A�‰ + ˆC,�A,B�‰ = 0, �6�

where A, B, and C are arbitrary observables. These properties
are well known from the Poisson bracket of classical me-
chanics, and they capture the essence of reversible dynamics.
The Jacobi identity �6�, which is a highly restrictive condi-
tion for formulating proper reversible dynamics, expresses
the invariance of Poisson brackets in the course of time
�time-structure invariance�.

The dissipative bracket satisfies the symmetry condition
�for a more sophisticated discussion of the Onsager-Casimir
symmetry properties of the dissipative bracket, see Secs.
3.2.1 and 7.2.4 of �13��

�A,B� = �B,A� �7�

and the non-negativeness condition

�A,A� � 0. �8�

This non-negativeness condition, together with the degen-
eracy requirement �2�, guarantees that the entropy is a non-
decreasing function of time:

dS

dt
= �S,S� � 0. �9�

The condition �8� may hence be regarded as a strong formu-
lation of the second law of nonequilibrium thermodynamics.

The formulation of GENERIC in terms of Poisson and
friction operators instead of brackets can be found in �12,13�.
One then formulates a time-evolution equation for the inde-
pendent variables x.

B. Elimination of degrees of freedom

Within the GENERIC framework, there are systematic
recipes for reducing the number of degrees of freedom in a
system, which is a classical problem of statistical mechanics.
For the general discussion of coarse graining, we assume that
we have more or less detailed levels of description in terms
of the variables x and y, respectively. We then need a prob-
ability density �y�x�, which represents the probability of a
more detailed state x contributing to the properties of the less
detailed state y. We further assume that there exists a func-
tion ��x� such that the variables y can be obtained by aver-
aging:

y =� ��x��y�x�Dx = ��	y , �10�

where we have introduced the notation �¯	y for averages
performed with �y�x�. For example, �y�x� might be given by
a generalized canonical or microcanonical ensemble for non-
equilibrium systems �13–15�. The function ��x� can be in-
terpreted as the more detailed expression for the coarser vari-
ables.

Now, if we know the generators E�x� and S�x� and the
brackets �·,·� and �·,·� on the more detailed level, how can we
determine the building blocks on the less detailed level by
means of ��x� and �y�x� in terms of the variables y? The
answer to this question is briefly summarized in the rest of
this section. Detailed derivations and explanations can be
found in �13–16�.

The energy of the less detailed level is obtained by
straightforward averaging with �y�x�. The transformation
rule for the entropy depends on the underlying ensemble. For
a linear expression for the slow variables in terms of the
more detailed variables, ��x�=Q�x, it makes sense to intro-
duce Lagrange multipliers on both levels of description be-
cause the underlying generalized canonical ensemble is in-
variant under linear transformations. The generalized
canonical ensembles on the more and less detailed levels are
given in terms of the longer list ��x� and the shorter list ��y�
of Lagrange multipliers. The conditional probability density
�y�x� for given y is then obtained by calculating the
Lagrange multipliers ��y� associated with y and choosing
the longer list of Lagrange multipliers,

��x� = ��y�Q�, �11�

thus representing merely the coarser physics on the finer
level of description. All microstates contributing to y= ��	y
=Q��x	y then contribute in an equivalent way to a properly
matched state x associated with ��x�. We hence have

�y�x� = 
det����x�
�x

�
�„��x� − ��y�Q�
… . �12�

Moreover, the entropy S��y� is then given by S�x�, provided
that the Lagrange multipliers associated with y and x are
related by Eq. �11�. This transformation rule for the entropy
can also be expressed in the surprisingly simple form

S��y� =� S�x��y�x�Dx = �S	y . �13�

No new entropy arises upon eliminating degrees of freedom
when the relation between the levels, which can be handled
by generalized canonical ensembles, is linear. The assump-
tion of a linear transformation should not be regarded as a
sign of untypical simplicity, but rather indicates that we rely
on a rich level of description in terms of configurational
distribution functions. For example, Fokker-Planck equations
for stochastic processes or the Schrödinger equation of quan-
tum mechanics are linear in probability densities or wave
functions, respectively, but they typically represent highly
nonlinear configurational processes. The passage to reduced
distributions and moments is a linear transformation. At the
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same time, there is a natural Boltzmann-type entropy associ-
ated with probability densities.

We now turn from the generators to the brackets. For two
observables A�y� and B�y� on the coarse-grained level, we
can consider the observables A(��x�) and B(��x�) on the
more detailed level, for which we know how to evaluate a
Poisson bracket. The result is a new observable depending on
x. By averaging this new observable with �y�x�, we obtain an
observable on the less detailed level, which we take as our
new coarse-grained Poisson bracket. This construction can
be summarized by the equation

�A,B�� = ��A,B�	y . �14�

If the same construction happens to provide the full dissipa-
tive bracket,

�A,B�� = ��A,B�	y , �15�

then we speak of a reduction procedure. The dissipative pro-
cesses on both levels are the same; they are merely described
with different resolution in terms of different variables. It
often happens, however, that new dissipative processes arise
upon eliminating degrees of freedom because some fast re-
versible processes are eliminated, so that new fluctuations
and hence dissipation arise. We then deal with coarse grain-
ing �see �17� for more information on the implications of the
fundamental distinction between model reduction and coarse
graining�. The relevant background for coarse graining is
that of the fluctuation-dissipation theorem and Green-Kubo
formulas �13�. An additional contribution

�A,B�� =
1

2kB

d

d�
�A��„x���…�B��„x���…�	y �16�

to the dissipative bracket arises. The trajectory x��� is con-
structed by means of the GENERIC evolution on the detailed
level from initial conditions x�0� distributed according to
�y�x�, and kB is Boltzmann’s constant. For a clear separation
of time scales between the variables eliminated and kept in
passing to the less detailed level of description, the expres-
sion �16� should be independent of �, provided that � is in-
termediate between the fast and slow time scales. Fast de-
grees of freedom of the more detailed level are turned into
random fluctuations of the coarse level so that we lose
mechanistic control of some processes and new dissipative
processes arise.

III. POLYMER SOLUTIONS

For discussing dynamic renormalization from a thermody-
namic perspective, we here consider dilute polymer solu-
tions. The starting point for our discussion of the flow be-
havior of dilute polymer solutions is the Rouse model �18�.
In that model, the polymers are represented by linear chains
of identical, spherical “beads” connected by Hookean
“springs.” The solvent is modeled as a Newtonian fluid,
which is completely characterized by its viscosity. The as-
sumption of purely entropic Hookean springs—that is, the
absence of finite-extensibility and excluded-volume
effects—requires long chains and a suitable, poor solvent

quality �� point; see, for example, Sec. II.2 of �19��. An
important physical effect, which is studied here, but was ne-
glected in the original Rouse model, is the perturbation of the
solvent flow field caused by the beads of the polymer chains
on moving through the solvent. Such perturbations propagate
through the solvent and hence influence the motion of the
other beads. This complicated nonlinear phenomenon is
known as “hydrodynamic interaction” �20,21�. The simple
bead-spring model is known to be successful in predicting
the universal properties of dilute polymer solutions which
result from the self-similarity of long-chain molecules.

A. Diffusion equation

Our development is based on conventional polymer ki-
netic theory—that is, on the Kirkwood diffusion equation for
the polymer dynamics—generalized to d-dimensional space.
The generalization to d dimensions does not introduce any
fundamental changes or practical difficulties, but makes our
discussion more directly comparable to previous calculations
which make use of the fact that hydrodynamic interaction
effects become weak near d=4 and can thus be treated per-
turbatively.

In the bead-spring model, the conformation of a polymer
chain can be characterized by the N bead-position vectors
r1 ,r2 , . . . ,rN with respect to the origin of a laboratory-fixed
coordinate frame. The velocity field of the incompressible
Newtonian solvent in which these polymer chains are sus-
pended is assumed to be homogeneous—that is, v�r�=v0
+��t� ·r, with a constant vector v0 and a traceless transpose
velocity gradient tensor ��t� independent of the position r,
but possibly dependent on the time t. Then, the diffusion
equation for the configurational distribution function 	
=	�r1 ,r2 , . . . ,rN� of the bead-spring model with Hookean
springs and configuration-dependent hydrodynamic interac-
tions is �see, for example, Eqs. �15.1-4� and �15.4-4� of �22�
or Eq. �4.63� of �23��

�	

�t
= − 


=1

N
�

�r


· �v�r
� +
1

�
F
 + 

�=1

N

��r
 − r�� · F��	

+
kBT

�


=1

N
�

�r


·
�

�r


	

+ kBT 

,�=1


��

N
�

�r


· ��r
 − r�� ·
�

�r�

	 , �17�

where the force F
 on bead 
 consists of two spring contri-
butions with spring constant H �the first contribution is miss-
ing for 
=1; the second contribution is missing for 
=N�:

F
 = H�r
−1 − r
� + H�r
+1 − r
� . �18�

Furthermore, T is the absolute temperature, � is the bead
friction coefficient, and ��r� is the hydrodynamic-
interaction tensor. The only way in which the space dimen-
sion d affects the above equations is through the concrete
form of the hydrodynamic-interaction tensor ��r�. In three
dimensions, the well-known Oseen tensor can be derived by
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solving the Navier-Stokes equation for an external force ex-
erted at a single point in space on a Newtonian solvent. In
doing so, the Navier-Stokes equation is linearized—that is,
advection-terms are neglected—and the solvent relaxation is
assumed to be very fast compared to typical polymer relax-
ation processes �at least, on a length scale comparable to the
radius of gyration of a polymer� �24�. In other words, the
Oseen tensor is the Green’s function for the time-
independent, linearized Navier-Stokes equation in d dimen-
sions. An explicit expression for the Oseen tensor can be
constructed by Fourier transformation:

��r� =
1

�2�d � 1

�sk
2�1 −

kk

k2 �eik·rddk , �19�

where k is the length of the wave vector k and �s is the
solvent viscosity. Note that the divergence of ��r� vanishes.
The occurrence of �s in the expression �19� shows the dissi-
pative character of hydrodynamic interactions. When com-
paring the second-order-derivative terms in the diffusion
equation �17�, we are led to introduce the dimensionless pa-
rameter

� =
�

�s
� kBT

H
��2−d�/2

, �20�

where �kBT /H�1/2 is a characteristic length scale of a connec-
tor spring. The dimensionless parameter � characterizes the
strength of hydrodynamic interactions compared to single-
bead friction on the bead level.

The validity of the description of hydrodynamic interac-
tions through Oseen tensors may be questioned because it
describes only the behavior at large distances and without
considering a finite propagation speed. However, at least to
first order in the deviation from four dimensions, the Oseen-
tensor approximation has been shown to be sufficient and a
coupled dynamic treatment of the polymer molecules and the
solvent is not required �24–27�.

B. GENERIC formulation

The GENERIC formulation of complex liquids requires
hydrodynamic plus structural variables. For the bead-spring
model of dilute polymer solutions, we use the variables x
= (��r� ,M�r� ,��r� ,	�r1 ,r2 , . . . ,rN�), where � is the mass
density, M is the momentum density, � is the internal energy
density, and 	 is the previously introduced configurational
distribution function. We here do not repeat the contributions
to the GENERIC building blocks associated with the hydro-
dynamic fields �see, for example, �12,13�� and focus on the
polymer contributions to the entropy and the dissipative
bracket. The energy is safely assumed to be independent of
the polymer configuration, and the convection of 	 expressed
in the Poisson bracket is straightforward.

The polymer contribution to the entropy is given by

Sp = −� � H

2T


=1

N−1

�r
+1 − r
�2 + kB ln 	�	ddr1 ¯ ddrN.

�21�

This expression highlights the entropic nature of the spring
constant H associated with the larger number of coiled rather
than stretched states. To obtain Eq. �21� for the extensive
configurational entropy, we have assumed that the normaliza-
tion of 	 is such that the integral of 	 over all bead positions
gives the total number of polymer molecules in the solution.

We write the polymer contribution to the dissipative
bracket as the sum of two contributions:

�A,B�p = �A,B�intra + �A,B�inter. �22�

The first contribution is associated with the friction coeffi-
cient of the individual beads,

�A,B�intra = 

=1

N � T

�
� �

�r


�A

�	
� · � �

�r


�B

�	
�	ddr1 ¯ ddrN,

�23�

whereas the second one represents the hydrodynamic inter-
actions between different beads,

�A,B�inter = 

,�=1


��

N � T� �

�r


�A

�	
� · ��r
 − r��

· � �

�r�

�B

�	
�	ddr1 ¯ ddrN. �24�

When introduced into the fundamental GENERIC equation
�1�, the polymer contributions to the entropy �21� and to the
dissipative bracket �22� reproduce all irreversible terms in
the diffusion equation �17�—that is, all terms except for the
reversible velocity term.

IV. DYNAMIC RENORMALIZATION

The bead concept is a fictitious one. Relevant predictions
should not depend on whether we choose smaller or larger
beads. In passing from smaller to larger beads, interactions
between several smaller beads must be accommodated in the
properties of a single larger bead. This is the essence of
renormalization. In our example, hydrodynamic interactions
between different small beads are expected to contribute to
the friction coefficient of a larger bead. Dissipative processes
associated with the bracket contribution �A ,B�inter for small
beads are moved into the dissipative-bracket contribution
�A ,B�intra. The only reversible process contributing to poly-
mer dynamics—namely, convection—is present on all length
scales and does not lead to additional dissipation on larger
scales.

In summary, dynamic renormalization is deeply linked
with the reshuffling of terms from �A ,B�inter to �A ,B�intra.
Whereas we could imagine converting self-similar reversible
processes on all length and time scales into dissipation, this
clearly is not the case for our example of dilute polymer
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solutions. The dynamic renormalization of hydrodynamic in-
teractions can hence be classified as a reduction technique
rather than a coarse-graining procedure. We expect the re-
shuffling of dissipative terms to be a rather natural and gen-
eral scenario. In fact, it would be interesting to find an ex-
ample of dynamic renormalization in which reversible
processes, on all length and time scales, are turned into dis-
sipative processes—that is, an example of coarse graining.

A. Entropy

We now apply the general rules for eliminating degrees of
freedom to the polymer contributions to the entropy �21� and
to the dissipative bracket �22�. To do so, we introduce the
following decimation procedure of the linear type:

��R1, . . . ,RM� =� ��
m=1

M

��Rm −
1

K



�Im

r
��
�	�r1, . . . ,rN�ddr1 ¯ ddrN, �25�

where the number of bead vectors has been reduced by a
factor of K from N to M =N /K and each Im is a set of K
consecutive integers,

Im = ��m − 1�K + 1, . . . ,mK�, m = 1, . . . ,M . �26�

In words, K consecutive beads of the original bead-spring
chain are collapsed into a single new bead at the center-of-
mass location. The choice of the center-of-mass position is
preferable over other possibilities because it is fully consis-
tent with iterating the decimation procedure. For a functional
A of �, which can be expressed as a functional A of 	 by
inserting Eq. �25�, it is useful to know the functional deriva-
tive

�A

�	�r1, . . . ,rN�
=� ��

m=1

M

��Rm −
1

K



�Im

r
��
�

�A

���R1, . . . ,RM�
ddR1 ¯ ddRM . �27�

Note that the transformation 	�� is linear and maps a
probability density onto another one. According to Eqs.
�6.147� and �6.151� of �13�, for probability densities, the
Lagrange multipliers of the generalized canonical ensemble
can be interpreted as dimensionless “effective potentials” in
the representation

	�r1, . . . ,rN� � ��r1, . . . ,rN�e−��r1,. . .,rN�, �28�

where ��r1 , . . . ,rN� is the number of microstates consistent
with beads at the positions r1 , . . . ,rN and the entropy is given
by

S = kB� �ln � − ln 	�	ddr1 ¯ ddrN. �29�

By comparison with Eq. �21�, we find the natural Gaussian
result

��r1, . . . rN� = �2kBT

H
�−d�N−1�/2

�exp�−
H

2kBT


=1

N−1

�r
+1 − r
�2� . �30�

For the further discussion, in which correlations between
neighboring connector vectors occur, it is actually conve-
nient to consider the more general version

��r1, . . . ,rN� = ��2kBT

H
�N−1

det ��−d/2

exp�−
H

2kBT

� 

,�=1

N−1

�
�
−1�r
+1 − r
� · �r�+1 − r��� , �31�

from which the special case in Eq. �30� is recovered for
strictly local correlations �
�=�
�.

We similarly have

��R1, . . . ,RM� � ��R1, . . . ,RM�e−��R1,. . .,RM�, �32�

where ��R1 , . . . ,RM� now is the number of microstates con-
sistent with the larger beads at the positions R1 , . . . ,RM and
the entropy is given by

S = kB� �ln � − ln ���ddR1 ¯ ddRM . �33�

The consistency �11� of the Lagrange multipliers on both
levels of description can be expressed as

��r1, . . . ,rN� = �� 1

K



�I1

r
, . . . ,
1

K



�IM

r
� , �34�

and Eq. �25� then gives the following intuitive relationship
expressing proper successive counting:

��R1, . . . ,RM� =� ��
m=1

M

��Rm −
1

K



�Im

r
��
���r1, . . . ,rN�ddr1 ¯ ddrN. �35�

With this identification, the constants of proportionality in
Eqs. �28� and �32� are equal. In terms of the respective Fou-

rier transforms �̃ and �̃, which facilitate the subsequent cal-
culations, this identity can be rewritten as

�̃�Q1, . . . ,QM� = �̃�Q1

K
, . . . ,

Q1

K
, . . . ,

QM

K
, . . . ,

QM

K
� ,

�36�

where, on the right-hand side, each argument occurs K con-
secutive times. Because the Fourier transforms of Gaussians
are Gaussians, all practical calculations can be reduced to
operations on matrices of second moments. For the general
form �31� of �, the Fourier transform is given by
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�̃�q1, . . . ,qN� = �2�d��

=1

N

q
�exp�−
1

2

kBT

H

� 

,�=1

N−1

F
�
�N�q
 · q�� , �37�

where the matrix

F
�
�N� = 

j,k=1

N−1

B
j� jkB�k �38�

is most conveniently defined in terms of the auxiliary matrix
expressing the transformation from connector vectors r
+1
−r
 to bead positions r
 �see p. 23 of �22��:

B
j = � j/N for 
 � j

�j/N� − 1 for 
 � j .
� �39�

The � function in Eq. �37� is associated with freedom of
overall translations of the polymer molecules.

For the standard assumption of uncorrelated connector
vectors �� jk=� jk�, the matrix F
�

�N� has the explicit form

F
�
�N� =

�N + 1��2N + 1�
6N

+

�
 − 1� + ��� − 1�

2N
− max�
,�� ,

�40�

with the interesting property



�Im


��In

F
�
�N� = K3Fmn

�M� +
1

6
K�K2 − 1�� 1

M
− �mn� , �41�

which is important when it comes to evaluating the right-
hand side of Eq. �36�. Without the underlined last term,
which actually is only a small correction term, the entropy on
the less detailed level of description would be of the same
form as in Eqs. �21� and �30� for the more detailed starting
level, however, with the renormalized spring constant

H� =
H

K
. �42�

The underlined term in Eq. �41� signalizes that, if one
starts with uncorrelated connector vector in the formulation
of �, there must be correlations in the connectors on the less
detailed level. The development of such correlations under
coarse graining has been discussed before �28�. They are
limited to nearest-neighbor correlations, and they are a con-
sequence of placing the coarser beads at the center of mass
of a collection of smaller beads. The results of �28� suggest
to choose

� jk = � jk +
1

4
�� jk+1 + �kj+1� . �43�

Once such nearest-neighbor correlations of relative strength
1 /4 are introduced, the corresponding F
�

�N� defined in Eq.

�38� satisfies the invariance property �41� without the under-
lined term or any other correction terms. In other words, the
entropy associated with � in Eq. �31� for the almost �rather
than strictly� local correlations �43� is rigorously invariant
under coarse graining. The entropic springs of the famous
Rouse-Zimm model are not fully appropriate because any
type of bead is located at the center of mass of a collection of
monomers and is hence correlated with its neighbors. The
incorporation of the invariance idea �43� and the renormal-
ization �42� of the entropic spring constant complete our cal-
culation of the entropy �33� on the less detailed level of
description from the one on the more detailed one. Note that
the expression for the invariant entropic spring potential,

�S = −
Ĥ

2 

,�=1

N−1

�
�
−1�r
+1 − r
� · �r�+1 − r�� , �44�

involves the inverse of the matrix � jk defined in Eq. �43� and
hence contains contributions from all pairs of beads. We here

use the symbol Ĥ because the correlations require a spring

constant stronger than H �actually, one should use Ĥ= 3
2H�.

B. Dissipative bracket

For functionals A and B of �, the evaluation of the dis-
sipative bracket �A ,B�intra according to its definition in Eq.
�23� is straightforward. By means of Eq. �27�, we obtain the
rigorous result

�A,B�intra = 
m=1

M � T

K�
� �

�Rm

�A

��
� · � �

�Rm

�B

��
�

��ddR1 ¯ ddRM , �45�

which has the nice feature of depending on 	 only through
�. Averaging hence does not change that expression any
further. Note that, compared to Eq. �23�, the friction coeffi-
cient K� occurs instead of �. From Eq. �24�, we similarly
obtain the rigorous reformulation

�A,B�inter = 
m,n=1

M � T� �

�Rm

�A

��
� · �mn · � �

�Rn

�B

��
�

��ddR1 ¯ ddRM , �46�

with

�mn��R1, . . . ,RM� =
1

K2 

�Im,��In


��

� ��r
 − r��

���
k=1

M

��Rk −
1

K



�Ik

r
��
�	�r1, . . . ,rN�ddr1 ¯ ddrN. �47�

The formal appearance of Eq. �46� is very similar to Eq. �24�,
but the tensors �mn defined in Eq. �47� are much more com-
plicated objects than the hydrodynamic interaction tensors
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��r
−r��. In principle, the tensors �mn could depend on all
the bead positions R1 , . . . ,RM, and the functional form then
even depends on the particular choice of 	. According to the
ensemble in Eq. �12�, averaging over 	 corresponds to the
proper choice �34� of Lagrange multipliers on the more de-
tailed level. By using Eqs. �28� and �32� with equal constants
of proportionality, we obtain

�mn = �mn�R1, . . . ,RM� =
1

K2 

�Im,��In


��

���r
 − r��	R1,. . .,RM

eq ,

�48�

where, for any function A�r1 , . . . ,rN�,

�A	R1,. . .,RM

eq =

� A�r1, . . . ,rN���
m=1

M

��Rm −
1

K



�Im

r
����r1, . . . ,rN�ddr1 ¯ ddrN

��R1, . . . ,RM�
�49�

is the conditional expectation of A for given positions
R1 , . . . ,RM of the coarse-grained beads, performed with the
equilibrium distribution function.

The expression �48� is still rigorous. The occurrence of
equilibrium averages is a nice simplifying feature. The
physical origin of this simplification lies in the matching of
the Lagrange multipliers, which implies that only the large-
scale features represented by the coarser level can feel non-
equilibrium effects. This simplification is a direct conse-
quence of the fundamental assumption of a separation of
time scales in nonequilibrium thermodynamics. The full
complexity of this calculation without scale separation can
be found in �29�.

For the further discussion of the hydrodynamic-
interaction tensors �mn in Eq. �48�, we distinguish the cases
m�n and m=n. For m�n, the small beads 
� Im are
grouped around Rm and the small beads �� In are located
near Rn. We may hence use the approximation

��r
 − r�� � ��Rm − Rn� �50�

in Eq. �48�. This approximation becomes exact when m and
n are far apart, which, in the limit of long chains, happens for
the majority of pairs m, n. For small differences �m−n�, the
approximation �50� becomes better when the rescaling factor
K increases. After performing the trivialized conditional av-
erage in Eq. �48�, we obtain the result

�mn = ��Rm − Rn� for m � n . �51�

The more interesting part of the renormalization proce-
dure now happens for m=n. Hydrodynamic interactions be-
tween small beads 
 and � contribute to the friction coeffi-
cient of the large bead m. From Eq. �48�, we have the exact
expression

�mm =
1

K2 

,��Im


��

���r
 − r��	R1,. . .,RM

eq . �52�

The absolute position Rm is irrelevant for the average �mm.
According to the above discussion of the entropy, however,
the relative positions of the neighboring coarse beads,

Rm�1−Rm, might have an influence on the conditional aver-
ages in Eq. �52�. In the spirit of the Rouse-Zimm model, we
neglect this potential correlation and approximate �mm by an
unconditional average that is independent of the configura-
tion and also of m:

�mm =
1

K2 

,��Im


��

���r
 − r��	eq =
DK

kBT
1 . �53�

Again, we expect the effect of the approximation to become
negligible for large rescaling factors K because all the proper
universal correlations develop within a single large bead. We
introduced the symbol DK for this equilibrium average be-
cause it actually coincides with the Kirkwood approximation
for the diffusion coefficient of a polymer molecule consisting
of K beads �22,30�. By incorporating �mm into the friction
coefficient �� of the large beads, we obtain from Eqs. �45�
and �53�

1

��
=

1

K�
+

DK

kBT
. �54�

The renormalization of the friction coefficient happens
through adding mobilities. For large rescaling factors K, the
decay of the diffusion coefficient in d�4 dimensions is
weaker than 1 /K so that we find the following asymptotic
behavior of the renormalized friction coefficient:

�� �
kBT

DK
. �55�

The diffusion coefficient introduced in Eq. �53� can be
evaluated by inserting the hydrodynamic interaction tensor
�19� and using the Fourier-transformed probability density
�37�:
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DK

kBT
=

1

K2 

,�=1


��

K
1

�2�d

d − 1

d
� 1

�sk
2

�exp�−
1

2

kBT

H
�F



�K� + F��
�K� − 2F
�

�K��k2�ddk . �56�

After introducing �40� and performing the Gaussian integra-
tions, we obtain

DK

kBT
=

1

K2 

,�=1


��

K
1

�2�d/2
d − 1

d�d − 2�
1

�s
��
 − ��

kBT

H
�−�d−2�/2

.

�57�

The sums can be approximated by integrals and then evalu-
ated to obtain the simple result

DK

kBT
=

1

�*

1

�s
�K

kBT

H
�−�d−2�/2

, �58�

with the constant prefactor

�* = �2�d/2d�d − 2��4 − d��6 − d�
8�d − 1�

for 2 � d � 4.

�59�

In terms of the dimensionless hydrodynamic interaction
parameter � introduced in Eq. �20�, the renormalization �54�
can be rewritten as

1

��
= K−�4−d�/21

�
+

1

�*
. �60�

We thus recognize that �* is the asymptotic value of �� for
large rescaling factors K. By differentiation we obtain the
following equation for the evolution of �� with K:

d��

d ln K
=

4 − d

2
���1 −

��

�*
� . �61�

The solution with proper initial conditions �note that Eq. �60�
holds only for large K and certainly not for K=1� can be
written as

� 1

��
−

1

�*
� = K−�4−d�/2�1

�
−

1

�*
� , �62�

which emphasizes the role of �* as the fixed point of the
renormalization-group transformation. Near four dimensions,
Eq. �59� implies the well-known result �7�

�* �
8

3
2�4 − d� �63�

for the fixed point.
The calculations of the renormalized entropy and dissipa-

tive bracket are strongly affected by the fact that we locate
the larger beads at the center of mass of a collection of
smaller beads. This leads to the particular correlations given
in Eq. �43� and to the occurrence of the Kirkwood approxi-
mation to the diffusion coefficient in the renormalized fric-

tion coefficient �54�. The calculation of the exact diffusion
coefficient is usually based on considering the random mo-
tion of the center of resistance rather than the center of mass
�22,30�. However, such an alternative does not exist in the
definition of the coarse-graining transformation because this
transformation should not involve any dynamic material in-
formation.

V. SUMMARY AND CONCLUSIONS

We have introduced the idea of performing dynamic
renormalization on the building blocks of nonequilibrium
thermodynamics as a generalization of the usual renormal-
ization of Hamiltonians at equilibrium. This offers an alter-
native to calculating and analyzing specific observables as-
sociated with dynamic material behavior. As a concrete
example, we have considered the renormalization of the en-
tropy and the dissipative bracket, or friction matrix, for dilute
polymer solutions with hydrodynamic interactions.

The usual entropy associated with independent Hookean
springs is found to be not invariant under renormalization.
Correlations between neighboring connector vectors need to
be considered so that the invariant entropy is a more general
quadratic form of the bead positions. Contrary to this invari-
ant generalized form of the entropy, the simple transforma-
tion behavior �42� of the spring constant is well known.

The discussion of the dissipative bracket reveals that
renormalization is a reduction technique. The renormaliza-
tion does not require any calculation of two-time correlation
functions or other dynamic information. On decimating the
number of degrees of freedom, dissipative hydrodynamic in-
teractions between different beads are incorporated into the
friction coefficient of a single larger bead, which leads to a
nontrivial renormalization of the friction coefficient. This
renormalization of the friction coefficient has several inter-
esting features.

�i� The renormalization is determined by the Kirkwood
approximation to the diffusion coefficient �rather than the
exact diffusion coefficient�.

�ii� The calculation of the renormalized friction coefficient
does not make use of perturbation theory or the analysis of
the singular behavior of any observable.

�iii� The rigorous fixed-point value of the friction coeffi-
cient is readily calculated in any space dimension.

Analytical calculations are feasible because we work on
the rich level of configurational distribution functions. The
decimation procedure hence requires only the linear opera-
tion of contracting distribution functions, and as a conse-
quence, we can benefit from the convenience of generalized
canonical ensembles. The calculations are further simplified
by assuming a separation of time scales, which implies that
the eliminated degrees of freedom are equilibrized. The final
integrations for long chains can be performed with isotropic
Gaussian distributions.

Whereas we do not make any use of perturbation theory,
we obtain the simple results �61� and �62� for the renormal-
ization of the friction coefficient, which are exactly of the
form that would result from first-order perturbation theory.
The automatic occurrence of the simplest perturbative result
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seems to be related to the fact that the exponent governing
the molecular-weight dependence of the size of polymer
chains ��=1 /2� does not change due to the presence of hy-
drodynamic interactions. The surprising possibility to per-
form the renormalization by a nonpertubative procedure may
be derogated by the fact that the diffusion equation for the
configurational distribution function with the Oseen-tensor
approximation, which is used as a starting point of our cal-
culations, has only been justified to first order in the devia-
tion from four dimensions �24–27�. This may also be the
reason why, starting from the diffusion equation, different
estimates of the fixed point in three dimensions have been
found for different observables in Eq. �9� of �31�.

Once the renormalization of the thermodynamic building
blocks has been carried out, the results can be used to deci-
mate the number of degrees of freedom of the original prob-
lem represented by the diffusion or Fokker-Planck equation
�17�. For our polymer chains, we can use the renormalized
parameters for short chains in Eq. �17�, and these short

chains can be treated by simulations, perturbation theory, or
any other method limited to a small number of degrees of
freedom �and hence not applicable without renormalization�.
In practice, it turns out that one needs to keep at least seven
or eight beads to represent hydrodynamic interactions in
three dimensions in a meaningful way. With increasing flow
rate, also the number of beads to be kept in the model in-
creases.

The thermodynamic approach to dynamic renormalization
proposed in this paper can readily be applied to other sys-
tems exhibiting self-similarity. The fact that we deal with a
reduction technique offers promising possibilities for extend-
ing equilibrium results to dynamic situations without per-
forming any time-dependent calculations.
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